• DocumentCode
    2845019
  • Title

    A hybrid simplex differential evolution algorithm

  • Author

    Wu, Lianghong ; Wang, Yaonan ; Yuan, Xiaofang ; Zhou, Shaowu

  • Author_Institution
    Sch. of Inf. & Electr. Eng., Hunan Univ. of Sci. & Technol., Xiangtan, China
  • fYear
    2010
  • fDate
    26-28 May 2010
  • Firstpage
    3039
  • Lastpage
    3045
  • Abstract
    According to the disadvantage of slow convergence rate of the basic differential evolution (DE) algorithm, a hybrid optimization algorithm incorporated Nelder & Mead (NM) simplex method into the basic DE algorithm is presented in this paper. This hybrid procedure performed the exploration with DE and the exploitation with the NM simplex method. Sensitivity to the control parameters of the proposed approach is analyzed. The computational results on several classical Benchmarks nonlinear complex functions show that the hybrid optimization algorithm is superior to the two original search techniques (i.e. NM and DE) in terms of solution quality and convergence rate. Compared with other DE variants, the proposed algorithm has better convergence performance and robustness. The Wilcoxon non-parametric statistical tests also confirm the above claims.
  • Keywords
    evolutionary computation; nonlinear functions; nonparametric statistics; optimisation; sensitivity; statistical testing; Nelder and Mead simplex method; Wilcoxon nonparametric statistical tests; control parameter sensitivity; hybrid optimization algorithm; nonlinear complex functions; search techniques; simplex differential evolution algorithm; Benchmark testing; DNA computing; Degradation; Educational institutions; Evolutionary computation; Genetic algorithms; Information technology; Optimization methods; Production; Robustness; Differential evolution; Hybrid optimization algorithm; Simplex method; non-parametric statistical;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Decision Conference (CCDC), 2010 Chinese
  • Conference_Location
    Xuzhou
  • Print_ISBN
    978-1-4244-5181-4
  • Electronic_ISBN
    978-1-4244-5182-1
  • Type

    conf

  • DOI
    10.1109/CCDC.2010.5498661
  • Filename
    5498661