• DocumentCode
    2857231
  • Title

    Enhanced self-configurability and yield in multicore grids

  • Author

    Kolonis, E. ; Nicolaidis, M. ; Gizopoulos, D. ; Psarakis, M. ; Collet, J.H. ; Zajac, P.

  • Author_Institution
    Dept. of Inf., Univ. of Piraeus, Piraeus, Greece
  • fYear
    2009
  • fDate
    24-26 June 2009
  • Firstpage
    75
  • Lastpage
    80
  • Abstract
    As we move deeper in the nanotechnology era, computer architecture is solicited to manipulate tremendous numbers of devices per chip with high defect densities. These trends provide new computing opportunities but efficiently exploiting them will require a shift towards novel, highly parallel architectures. Fault tolerant mechanisms will have to be integrated to the design to deal with the low yield of future nanofabrication processes. In this paper we consider multi processor grid (MPG) architectures that assure scalability beyond hundreds of cores per chip. We study self-diagnosis and self-configuration methods at the architectural level and propose an enhanced self-configuration methodology that enables usage of a maximum percentage of available fault-free cores in MPGs with high defect densities. We show that our approach achieves usability of all fault-free cores for the case of fault-free routers whereas previous work was efficient for defect densities of up to 20-25% of defective cores. We also address the case of faulty routers, achieving usability of almost all fault-free nodes (fault-free cores having a fault-free router) for very high defect densities both in the cores and in the routers.
  • Keywords
    fault tolerant computing; grid computing; multiprocessing systems; nanofabrication; parallel architectures; fault tolerant mechanisms; fault-free cores; multicore grids; multiprocessor grid; nanofabrication; parallel architecture; self-configurability; self-configuration; self-diagnosis; Computer architecture; Computer science; Fault tolerance; Informatics; Laboratories; Microelectronics; Multicore processing; Nanotechnology; Parallel architectures; Usability;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    On-Line Testing Symposium, 2009. IOLTS 2009. 15th IEEE International
  • Conference_Location
    Sesimbra, Lisbon
  • Print_ISBN
    978-1-4244-4596-7
  • Electronic_ISBN
    978-1-4244-4595-0
  • Type

    conf

  • DOI
    10.1109/IOLTS.2009.5195986
  • Filename
    5195986