• DocumentCode
    288713
  • Title

    Enhancing multi-layer perceptron [process control and modelling]

  • Author

    Galán, R. ; Mariño, M. ; Jiménez, A.

  • Author_Institution
    Dept. de Automatica, Ingenieria Electron. e Inf. Ind., Univ. Politecnica de Madrid, Spain
  • Volume
    4
  • fYear
    1994
  • fDate
    27 Jun-2 Jul 1994
  • Firstpage
    2661
  • Abstract
    This paper present the results of a research on process modelling and control with neural networks, carried out in DISAM: Division de Ingenieria de Sistemas y Automatica, Universidad Politecnica de Madrid. The main goal of this research is the integration of neural networks in intelligent control applications of complex processes. A performance evaluation analyzing the number of delays, hidden layers and the quality of learning inputs is shown. Finally, the authors propose an enhancement of inputs with new information-products of inputs-to improve the accuracy of the neural network
  • Keywords
    intelligent control; learning (artificial intelligence); multilayer perceptrons; neurocontrollers; process control; accuracy; delays; hidden layers; multi-layer perceptron; neural networks; performance evaluation; process control; process modelling; Adaptive control; Backpropagation; Delay; Industrial control; Intelligent control; Multi-layer neural network; Multilayer perceptrons; Neural networks; Performance analysis; Process control;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on
  • Conference_Location
    Orlando, FL
  • Print_ISBN
    0-7803-1901-X
  • Type

    conf

  • DOI
    10.1109/ICNN.1994.374642
  • Filename
    374642