• DocumentCode
    28879
  • Title

    On the Convergence of Maronna’s M -Estimators of Scatter

  • Author

    Chitour, Y. ; Couillet, Romain ; Pascal, F.

  • Author_Institution
    Lab. des Signaux et Syst., Supelec, Gif-sur-Yvette, France
  • Volume
    22
  • Issue
    6
  • fYear
    2015
  • fDate
    Jun-15
  • Firstpage
    709
  • Lastpage
    712
  • Abstract
    In this letter, we propose an alternative proof for the uniqueness of Maronna´s M-estimator of scatter for N vector observations y1, ..., yN ∈ Rm under a mild constraint of linear independence of any subset of m of these vectors. This entails in particular almost sure uniqueness for random vectors yi with a density as long as N > m. This approach allows to establish further relations that demonstrate that a properly normalized Tyler´s M-estimator of scatter can be considered as a limit of Maronna´s M-estimator. More precisely, the contribution is to show that each M-estimator, verifying some mild conditions, converges towards a particular Tyler´s M-estimator. These results find important implications in recent works on the large dimensional (random matrix) regime of robust M-estimation.
  • Keywords
    S-matrix theory; covariance matrices; estimation theory; Maronna M-estimator of scatter convergence; covariance matrix estimation; linear independence; normalized Tyler M-estimator of scatter; random vectors; scatter matrices; Convergence; Equations; Maximum likelihood estimation; Robustness; Sociology; Symmetric matrices; Vectors; $M$-estimators; Covariance matrix estimation; Tyler’s estimator;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2014.2367547
  • Filename
    6948342