Title :
Quantum-dots in micro-pillar micro-cavities: experiment and theory
Author :
Hu, C.Y. ; Gibson, R. ; Ho, Y.-L.D. ; Cryan, M.J. ; Craddock, I.J. ; Railton, C.J. ; Sanvitto, D. ; Daraei, A. ; Hopkinson, M. ; Skolnick, M.S. ; Rarity, J.G.
Author_Institution :
Dept. of Electr. & Electron. Eng., Bristol Univ., UK
Abstract :
This work reports on the modelled micro-pillar micro-cavities made of III-V semiconductor materials (AlAs/GaAs) with quarter-wavelength-period stacks resonant at wavelengths in the 900-1000 nm region using the 3-D finite-difference time-domain (FDTD) method. A broadband dipole source is placed in the centre of the cavity and a short few-cycle excitation pulse is input to model quantum dot emission. The cavity then rings at its resonant frequency and the cavity ring down is monitored using a probe above the pillar. This allows the resonances of the various waveguide modes in the cavity to be determined.
Keywords :
III-V semiconductors; aluminium compounds; finite difference time-domain analysis; gallium arsenide; microcavities; photoluminescence; quantum communication; semiconductor quantum dots; 3-D finite-difference time-domain; AlAs-GaAs; III-V semiconductor materials; broadband dipole source; cavity ring down; few-cycle excitation pulse; micropillar microcavities; quantum dot emission; quantum-dots; quarter-wavelength-period stacks; waveguide modes; Finite difference methods; Gallium arsenide; III-V semiconductor materials; Monitoring; Probes; Quantum dots; Resonance; Resonant frequency; Semiconductor materials; Time domain analysis;
Conference_Titel :
Quantum Electronics Conference, 2005. EQEC '05. European
Print_ISBN :
0-7803-8973-5
DOI :
10.1109/EQEC.2005.1567491