• DocumentCode
    2903544
  • Title

    Hyperbolic Hamiltonian flows and the semi-classical Poincaré map

  • Author

    Fadhlaoui, H. ; Louati, H. ; Rouleux, M.

  • Author_Institution
    Dept. de Math., Univ. de Tunis El-Manar, Tunis, Tunisia
  • fYear
    2013
  • fDate
    27-31 May 2013
  • Firstpage
    53
  • Lastpage
    58
  • Abstract
    We consider semi-excited resonances created by a periodic orbit of hyperbolic type for Schrödinger like operators with a small “Planck constant”. They are defined within an analytic framework based on the semi-classical quantization of Poincaré map in action-angle variables.
  • Keywords
    Poincare mapping; Schrodinger equation; quantisation (quantum theory); Planck constant; Schrodinger like operators; action-angle variables; analytic framework; hyperbolic Hamiltonian flows; periodic orbit; semi-excited resonances; semiclassical Poincare map; semiclassical quantization; Diffraction; Eigenvalues and eigenfunctions; Energy states; Manifolds; Orbits; Quantization (signal); Space vehicles;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Days on Diffraction (DD), 2013
  • Conference_Location
    St. Petersburg
  • Print_ISBN
    978-1-4799-1037-3
  • Type

    conf

  • DOI
    10.1109/DD.2013.6712803
  • Filename
    6712803