DocumentCode
2911245
Title
Computing descent direction of MTL robustness for non-linear systems
Author
Abbas, Haider ; Fainekos, Georgios
Author_Institution
Schools of Eng., Arizona State Univ., Tempe, AZ, USA
fYear
2013
fDate
17-19 June 2013
Firstpage
4405
Lastpage
4410
Abstract
The automatic analysis of transient properties of nonlinear dynamical systems is a challenging problem. The problem is even more challenging when complex state-space and timing requirements must be satisfied by the system. Such complex requirements can be captured by Metric Temporal Logic (MTL) specifications. The problem of finding system behaviors that do not satisfy an MTL specification is referred to as MTL falsification. This paper presents an approach for improving stochastic MTL falsification methods by performing local search in the set of initial conditions. In particular, MTL robustness quantifies how correct or wrong is a system trajectory with respect to an MTL specification. Positive values indicate satisfaction of the property while negative values indicate falsification. A stochastic falsification method attempts to minimize the system´s robustness with respect to the MTL property. Given some arbitrary initial state, this paper presents a method to compute a descent direction in the set of initial conditions, such that the new system trajectory gets closer to the unsafe set of behaviors. This technique can be iterated in order to converge to a local minimum of the robustness landscape. The paper demonstrates the applicability of the method on some challenging nonlinear systems from the literature.
Keywords
nonlinear dynamical systems; temporal logic; MTL falsification method; MTL robustness; MTL specification; metric temporal logic; nonlinear dynamical system; stochastic falsification method; Linear programming; Measurement; Robustness; Stochastic processes; Trajectory; Transient analysis; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference (ACC), 2013
Conference_Location
Washington, DC
ISSN
0743-1619
Print_ISBN
978-1-4799-0177-7
Type
conf
DOI
10.1109/ACC.2013.6580518
Filename
6580518
Link To Document