Title :
Ordinal hyperplanes ranker with cost sensitivities for age estimation
Author :
Chang, Kuang-Yu ; Chen, Chu-Song ; Hung, Yi-Ping
Author_Institution :
Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
Abstract :
In this paper, we propose an ordinal hyperplane ranking algorithm called OHRank, which estimates human ages via facial images. The design of the algorithm is based on the relative order information among the age labels in a database. Each ordinal hyperplane separates all the facial images into two groups according to the relative order, and a cost-sensitive property is exploited to find better hyperplanes based on the classification costs. Human ages are inferred by aggregating a set of preferences from the ordinal hyperplanes with their cost sensitivities. Our experimental results demonstrate that the proposed approach outperforms conventional multiclass-based and regression-based approaches as well as recently developed ranking-based age estimation approaches.
Keywords :
face recognition; regression analysis; OHRank; age estimation; classification costs; cost sensitivities; cost-sensitive property; facial images; multiclass-based and regression-based approaches; ordinal hyperplanes ranking algorithm; ranking-based age estimation approach; Aging; Databases; Estimation; Face; Humans; Kernel; Support vector machines;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4577-0394-2
DOI :
10.1109/CVPR.2011.5995437