DocumentCode :
291983
Title :
Learning linear threshold functions
Author :
Bylander, Tom
Author_Institution :
Div. of Math. Comput. Sci. & Stat., Texas Univ., San Antonio, TX, USA
Volume :
2
fYear :
1994
fDate :
2-5 Oct 1994
Firstpage :
1166
Abstract :
This paper surveys recent theoretical results on algorithms for learning linear threshold functions (aka perceptrons, linear discriminants). When the examples are linearly separable, Littlestone has introduced algorithms that are much faster than the perceptron algorithm when there are many irrelevant attributes. When the examples are not linearly separable, Gallant´s Ratchet algorithm will converge to the optimal linear threshold function, albeit slowly, and Bylander´s perceptron-noise algorithm will converge quickly to optimal in the special case of classification noise. Empirical comparisons on some nonlinearly-separable real-world datasets are presented
Keywords :
computational complexity; learning (artificial intelligence); perceptrons; Bylander perceptron-noise algorithm; Gallant´s Ratchet algorithm; Littlestone algorithm; aka perceptrons; convergence; linear discriminants; linear threshold functions; linear threshold learning; machine learning; Algorithm design and analysis; Computer science; Convergence; Linear programming; Machine learning; Machine learning algorithms; Mathematics; Neural networks; Nonhomogeneous media; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics, 1994. Humans, Information and Technology., 1994 IEEE International Conference on
Conference_Location :
San Antonio, TX
Print_ISBN :
0-7803-2129-4
Type :
conf
DOI :
10.1109/ICSMC.1994.400002
Filename :
400002
Link To Document :
بازگشت