DocumentCode :
2920229
Title :
Particle Filter Based Non-Stationary Noise Tracking for Robust Speech Recognition
Author :
Fujimoto, Masakiyo ; Nakamura, Satoshi
Author_Institution :
ATR Spoken Language Translation Res. Labs., Kyoto, Japan
Volume :
1
fYear :
2005
fDate :
March 18-23, 2005
Firstpage :
257
Lastpage :
260
Keywords :
Monte Carlo methods; hidden Markov models; importance sampling; least mean squares methods; sequential estimation; speech recognition; HMM; MMSE-based clean speech estimation; Markov chain Monte Carlo sampling; Metropolis-Hastings sampling; noise robustness; noise sequence estimation; nonstationary noise tracking; particle filter based speech recognition; residual resampling; sequential importance sampling; sequential noise estimation; speech recognition accuracy; Acoustic noise; Collision mitigation; Hidden Markov models; Monte Carlo methods; Noise robustness; Particle filters; Particle tracking; Speech enhancement; Speech recognition; Working environment noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1415099
Filename :
1415099
Link To Document :
بازگشت