• DocumentCode
    2929633
  • Title

    Shrinkage approach for EEG covariance matrix estimation

  • Author

    Beltrachini, Leandro ; Von Ellenrieder, Nicolás ; Muravchik, Carlos H.

  • Author_Institution
    Lab. de Electron. Ind., Control e Instrumentacion, Univ. Nac. de La Plata, La Plata, Argentina
  • fYear
    2010
  • fDate
    Aug. 31 2010-Sept. 4 2010
  • Firstpage
    1654
  • Lastpage
    1657
  • Abstract
    We present a shrinkage estimator for the EEG spatial covariance matrix of the background activity. We show that such an estimator has some advantages over the maximum likelihood and sample covariance estimators when the number of available data to carry out the estimation is low. We find sufficient conditions for the consistency of the shrinkage estimators and results concerning their numerical stability. We compare several shrinkage schemes and show how to improve the estimator by incorporating known structure of the covariance matrix.
  • Keywords
    covariance matrices; electroencephalography; inverse problems; medical signal processing; numerical analysis; EEG covariance matrix estimation; EEG spatial covariance matrix; background activity; numerical stability; shrinkage approach; shrinkage estimators; Brain modeling; Covariance matrix; Electroencephalography; IP networks; Maximum likelihood estimation; Noise; Algorithms; Data Interpretation, Statistical; Diagnosis, Computer-Assisted; Electroencephalography; Humans; Regression Analysis; Reproducibility of Results; Sensitivity and Specificity;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE
  • Conference_Location
    Buenos Aires
  • ISSN
    1557-170X
  • Print_ISBN
    978-1-4244-4123-5
  • Type

    conf

  • DOI
    10.1109/IEMBS.2010.5626668
  • Filename
    5626668