Title :
Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and ≪60mV/dec subthreshold slope
Author :
Krishnamohan, Tejas ; Kim, Donghyun ; Raghunathan, Shyam ; Saraswat, Krishna
Author_Institution :
Stanford Univ., Stanford, CA
Abstract :
The main challenges for Tunnel FETs are experimentally demonstrating SS<60 mV/dec, high ON currents and solving their ambipolar behavior. We have experimentally demonstrated a Double-Gate, Strained-Ge, Heterostructure Tunneling FET (TFET) exhibiting very high drive currents and SS<60 mV/dec. Due to small bandgap of s-Ge and the electrostatics of the DG structure, record high drive current of 300 uA/um (the highest ever reported experimentally for a TFET) and a subthreshold slope of ~50 mV/dec was observed. In addition, to address the ambipolar problem and examine the scalability of TFETs, we have developed a sophisticated TFET simulator that uses a Quantum transport model, Non-local BTBT, complete Bandstructure (real and complex) information, and includes all transitions (direct and phonon assisted). Using this simulator, we have studied the scalability of three asymmetric DG TFET configurations (underlapped drain, lower drain doping and lateral heterostructure) in terms of their ability to solve the ambipolar behavior and achieve high ON and low OFF currents.
Keywords :
MOSFET; electrostatics; germanium; high electron mobility transistors; ambipolar behavior; bandstructure information; double-gate strained-Ge heterostructure tunneling FET; electrostatics; nonlocal BTBT; quantum transport model; Doping; Double-gate FETs; Electrical resistance measurement; Electrostatics; MOSFETs; Phonons; Photonic band gap; Scalability; Tunneling; Voltage;
Conference_Titel :
Electron Devices Meeting, 2008. IEDM 2008. IEEE International
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-4244-2377-4
Electronic_ISBN :
8164-2284
DOI :
10.1109/IEDM.2008.4796839