• DocumentCode
    2947704
  • Title

    An improvement to the natural gradient learning algorithm for multilayer perceptrons

  • Author

    Bastian, Michael R. ; Gunther, Jacob H. ; Moon, Todd K.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Utah State Univ., Logan, UT, USA
  • Volume
    5
  • fYear
    2005
  • fDate
    18-23 March 2005
  • Abstract
    Natural gradient learning has been shown to avoid singularities in the parameter space of multilayer perceptrons. However, it requires a large number of additional parameters beyond ordinary backpropagation. The article describes a new approach to natural gradient learning in which the number of parameters necessary is much smaller than in the natural gradient algorithm. This new method exploits the algebraic structure of the parameter space to reduce the space and time complexity of the algorithm and improve its performance.
  • Keywords
    computational complexity; gradient methods; learning (artificial intelligence); multilayer perceptrons; backpropagation; multilayer perceptrons; natural gradient learning algorithm; parameter space; space complexity; time complexity; Backpropagation algorithms; Computer networks; Jacobian matrices; Moon; Multilayer perceptrons; Noise robustness; Random variables; Tensile stress;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-8874-7
  • Type

    conf

  • DOI
    10.1109/ICASSP.2005.1416303
  • Filename
    1416303