DocumentCode
2947704
Title
An improvement to the natural gradient learning algorithm for multilayer perceptrons
Author
Bastian, Michael R. ; Gunther, Jacob H. ; Moon, Todd K.
Author_Institution
Dept. of Electr. & Comput. Eng., Utah State Univ., Logan, UT, USA
Volume
5
fYear
2005
fDate
18-23 March 2005
Abstract
Natural gradient learning has been shown to avoid singularities in the parameter space of multilayer perceptrons. However, it requires a large number of additional parameters beyond ordinary backpropagation. The article describes a new approach to natural gradient learning in which the number of parameters necessary is much smaller than in the natural gradient algorithm. This new method exploits the algebraic structure of the parameter space to reduce the space and time complexity of the algorithm and improve its performance.
Keywords
computational complexity; gradient methods; learning (artificial intelligence); multilayer perceptrons; backpropagation; multilayer perceptrons; natural gradient learning algorithm; parameter space; space complexity; time complexity; Backpropagation algorithms; Computer networks; Jacobian matrices; Moon; Multilayer perceptrons; Noise robustness; Random variables; Tensile stress;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN
1520-6149
Print_ISBN
0-7803-8874-7
Type
conf
DOI
10.1109/ICASSP.2005.1416303
Filename
1416303
Link To Document