• DocumentCode
    295139
  • Title

    A new computational method for the functional inequality constrained minimax optimization problem

  • Author

    Jiang, D.-C. ; Teo, K.L. ; Yan, W.Y.

  • Author_Institution
    Dept. of Syst. Eng., Australian Nat. Univ., Canberra, ACT, Australia
  • Volume
    3
  • fYear
    1995
  • fDate
    13-15 Dec 1995
  • Firstpage
    2310
  • Abstract
    Considers a general class of functional inequality constrained minimax optimisation problems. This problem is first converted into a semi-infinite programming problem. Then, an auxiliary cost function is constructed based on a positive saturated function. The smallest zero of this auxiliary cost function is equal to the minimal cost of the semi-infinite programming problem. However, this auxiliary cost function is non-smooth. Thus, a smoothing function is introduced. Then, an efficient computational procedure is developed for approximating the smallest zero of this auxiliary cost function. Furthermore, an error bound is established to validate the accuracy of the approximate solution. For illustration, two numerical examples are solved using the proposed approach
  • Keywords
    mathematical programming; minimax techniques; cost function; error bound; functional inequality constrained minimax optimization problem; positive saturated function; semi-infinite programming problem; Australia; Constraint optimization; Cost function; Frequency; Functional programming; Minimax techniques; Smoothing methods; Systems engineering and theory; Telecommunication computing; Transfer functions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
  • Conference_Location
    New Orleans, LA
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-2685-7
  • Type

    conf

  • DOI
    10.1109/CDC.1995.480548
  • Filename
    480548