• DocumentCode
    295809
  • Title

    An ε-approximation approach for global optimization with an application to neural networks

  • Author

    Lu, Min ; Shimizu, Kiyotaka

  • Author_Institution
    Adv. Technol. Center, Chiyoda Corp., Yokohama, Japan
  • Volume
    2
  • fYear
    1995
  • fDate
    Nov/Dec 1995
  • Firstpage
    783
  • Abstract
    This paper proposes an ε-approximation approach based on the tunneling methods for finding a globally optimal solution of a function of several variables. In this approach, after some locally minimal solution is found, one must obtain a new initial point from which a better local solution can be obtained by a gradient method. For that, a Newton-like method called the restoration procedure is used. Computational results of several standard test problems are presented. Further more, an application to hierarchical neural networks is discussed. Global optimization is an unavoidable task for optimizing a neural network, since a hierarchical neural network with repeated nonlinear mapping has generally many local minima with respect to weighting coefficients
  • Keywords
    Newton method; approximation theory; mathematics computing; neural nets; optimisation; approximation; global optimization; gradient method; hierarchical neural networks; repeated nonlinear mapping; restoration procedure; tunneling methods; weighting coefficients; Equations; Gradient methods; Neural networks; Testing; Tunneling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 1995. Proceedings., IEEE International Conference on
  • Conference_Location
    Perth, WA
  • Print_ISBN
    0-7803-2768-3
  • Type

    conf

  • DOI
    10.1109/ICNN.1995.487517
  • Filename
    487517