• DocumentCode
    2965532
  • Title

    Revisiting Boltzmann learning: parameter estimation in Markov random fields

  • Author

    Hansen, Lars Kai ; Andersen, Lars Nonboe ; Kjems, Ulrik ; Larsen, Jan

  • Author_Institution
    Electron. Inst., Tech. Univ., Lyngby, Denmark
  • Volume
    6
  • fYear
    1996
  • fDate
    7-10 May 1996
  • Firstpage
    3394
  • Abstract
    This article presents a generalization of the Boltzmann machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce those of the inhomogeneous teacher network
  • Keywords
    Boltzmann machines; Markov processes; image segmentation; learning (artificial intelligence); maximum likelihood estimation; unsupervised learning; Boltzmann learning; Boltzmann machine; Markov random fields; image segmentation; inhomogeneous Markov field; learning rule; maximum a posteriori estimation; maximum likelihood estimation; parameter estimation; regularization; supervised learning; unsupervised learning; Cost function; Image segmentation; Machine learning; Markov random fields; Maximum likelihood estimation; Minimization methods; Neural networks; Parameter estimation; Stochastic processes; Unsupervised learning;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on
  • Conference_Location
    Atlanta, GA
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-3192-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.1996.550606
  • Filename
    550606