DocumentCode
2977609
Title
Matching zeros: a fixed constraint in multivariable synthesis
Author
Sain, Michael K. ; Wyman, Bostwick F. ; Peczkowski, Joseph L.
Author_Institution
Dept. of Electr. & Comput. Eng., Notre Dame Univ., IN, USA
fYear
1988
fDate
7-9 Dec 1988
Firstpage
2060
Abstract
The model-matching equation (T z)=P ( z )M (z ) induces constraints on the multivariate zero structures of P (z ) and M ( z ), and the nature of the constraint is best explained by extending the usual notion of zero. In particular, the extended Γ-zero module of P (z ) must contain as a submodule the module Z Γ of matching Γ-zeros, which depends only on T (z ) and M (z ), and the extended Ω-zero module of M ( z ) must contain as a factor module the module Z Ω of matching Ω-zeros, which depends only on T (z ) and P (z ). Essential solutions, in which the constraint is by module isomorphism, are possible if and only if the nullity of P (z ) does not exceed the nullity of T (z ), on the one hand, or the conullity of M (z ) does not exceed the conullity of T (z ), on the other
Keywords
control system synthesis; multivariable control systems; poles and zeros; conullity; extended Γ-zero module; extended Ω-zero module; matching Γ-zeros; matching Ω-zeros; model-matching; module isomorphism; multivariable control system synthesis; multivariate zero structures; nullity; Aerospace control; Control engineering computing; Equations; Feedback; Mathematics; Poles and zeros; Polynomials; Power engineering and energy; Transfer functions; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control, 1988., Proceedings of the 27th IEEE Conference on
Conference_Location
Austin, TX
Type
conf
DOI
10.1109/CDC.1988.194696
Filename
194696
Link To Document