• DocumentCode
    2989784
  • Title

    Sequential probability assignment via online convex programming using exponential families

  • Author

    Raginsky, Maxim ; Marcia, Roummel F. ; Silva, Jorge ; Willett, Rebecca M.

  • Author_Institution
    ECE Dept., Duke Univ., Durham, NC, USA
  • fYear
    2009
  • fDate
    June 28 2009-July 3 2009
  • Firstpage
    1338
  • Lastpage
    1342
  • Abstract
    This paper considers the problem of sequential assignment of probabilities (likelihoods) to elements of an individual sequence using an exponential family of probability distributions. We draw upon recent work on online convex programming to devise an algorithm that does not require computing posterior distributions given all current observations, involves simple primal-dual parameter updates, and achieves minimax per-round regret against slowly varying product distributions with marginals drawn from the same exponential family. We validate the theory on synthetic data drawn from a time-varying distribution over binary vectors of high dimensionality.
  • Keywords
    convex programming; minimax techniques; statistical distributions; binary vectors; exponential families; minimax per-round regret; online convex programming; primal-dual parameter updates; probability distributions; sequential probability assignment; time-varying distribution; Data compression; Distributed computing; Entropy; Investments; Minimax techniques; Mirrors; Probability distribution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 2009. ISIT 2009. IEEE International Symposium on
  • Conference_Location
    Seoul
  • Print_ISBN
    978-1-4244-4312-3
  • Electronic_ISBN
    978-1-4244-4313-0
  • Type

    conf

  • DOI
    10.1109/ISIT.2009.5205929
  • Filename
    5205929