DocumentCode :
2989837
Title :
Segmentation of microscope cell images via adaptive eigenfilters
Author :
Kumar, S. ; Ong, S.H. ; Ranganath, S. ; Chew, F.T. ; Ong, T.C.
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore
Volume :
1
fYear :
2004
fDate :
24-27 Oct. 2004
Firstpage :
135
Abstract :
This paper presents the use of a PCA based approach to segment cells from RGB light microscope images. The proposed segmentation is accurate and robust under uneven illumination, lighting variation, and noise. Principal component analysis (PCA) is first applied to the RGB color bands of the image. The image corresponding to the principal component has significantly better contrast over the original image. A set of eigenfilters is then obtained by applying PCA to local neighborhoods of this image. A pair of filters from this set, corresponding to the second and third largest eigenvalues, resembles ramp edge filters with orientations that adapt to the image. These edge filters are used to obtain the edgemap of the image. We define a criterion that enables accurate detection of valid edges of cells while suppressing noise.
Keywords :
adaptive filters; edge detection; eigenvalues and eigenfunctions; image denoising; image segmentation; medical image processing; microscopy; PCA; RGB color bands; RGB light microscope images; adaptive eigenfilters; cell edge detection; edgemap; eigenvalues; microscope cell image segmentation; noise suppression; principal component analysis; ramp edge filters; Colored noise; Eigenvalues and eigenfunctions; Filters; Image color analysis; Image edge detection; Image segmentation; Lighting; Microscopy; Noise robustness; Principal component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2004. ICIP '04. 2004 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-8554-3
Type :
conf
DOI :
10.1109/ICIP.2004.1418708
Filename :
1418708
Link To Document :
بازگشت