DocumentCode
299014
Title
Uniqueness of the general mixed H2/H∞ optimal controller
Author
Walker, David E. ; Ridgely, D. Brett
Author_Institution
US Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA
Volume
2
fYear
1995
fDate
21-23 Jun 1995
Firstpage
1453
Abstract
A convex analysis approach to the general mixed H2/H ∞ optimal control design with single and multiple H∞ constraints is developed. The system consists of a plant and stable weights on the H2 and H∞ transfer functions, and is linear-time-invariant. The controller order is relaxed to an unknown but optimal order and the nature of the solution is examined. It is shown that the optimal controller is unique through the use of a Youla parametrization and convex analysis. Uniqueness is combined with the Kuhn-Tucker conditions to characterise the solution to the mixed problem with a finite set of H∞ constraints. Finally, the nature of a fixed order controller is examined
Keywords
H∞ control; constraint theory; control system analysis; linear systems; optimisation; transfer functions; Kuhn-Tucker conditions; Youla parametrization; convex analysis; fixed order controller; linear-time-invariant systems; mixed H2/H∞ controller; optimal controller; transfer functions; uniqueness; Control design; Control systems; Force control; Hydrogen; Optimal control; Output feedback; Space technology; State feedback; Transfer functions; US Government;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference, Proceedings of the 1995
Conference_Location
Seattle, WA
Print_ISBN
0-7803-2445-5
Type
conf
DOI
10.1109/ACC.1995.520991
Filename
520991
Link To Document