• DocumentCode
    301199
  • Title

    3D super-resolution using generalized sampling expansion

  • Author

    Shekarforoush, H. ; Berthod, M. ; Zerubia, J.

  • Author_Institution
    Inst. Nat. de Recherche en Inf. et Autom., Sophia Antipolis, France
  • Volume
    2
  • fYear
    1995
  • fDate
    23-26 Oct 1995
  • Firstpage
    300
  • Abstract
    Using a set of low resolution images it is possible to reconstruct high resolution information by merging low resolution data on a finer grid. A 3D super-resolution algorithm is proposed, based on a probabilistic interpretation of the n-dimensional version of Papoulis´ (1977) generalized sampling theorem. The algorithm is devised for recovering the albedo and the height map of a Lambertian surface in a Bayesian framework, using Markov random fields for modeling the a priori knowledge
  • Keywords
    Bayes methods; Markov processes; image reconstruction; image resolution; image sampling; random processes; 3D superresolution algorithm; Bayesian framework; Lambertian surface; Markov random fields; generalized sampling expansion; generalized sampling theorem; height map; high resolution information; image reconstruction; image resolution; low resolution images; probabilistic interpretation; Bayesian methods; Cost function; Image reconstruction; Image resolution; Image sampling; Iterative algorithms; Markov random fields; Merging; Sampling methods; Surface reconstruction;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing, 1995. Proceedings., International Conference on
  • Conference_Location
    Washington, DC
  • Print_ISBN
    0-8186-7310-9
  • Type

    conf

  • DOI
    10.1109/ICIP.1995.537474
  • Filename
    537474