DocumentCode
3012575
Title
On upper bounds for the distance of codes of small size
Author
Krasikov, Ilia ; Litsyn, Simon
Author_Institution
Dept. of Electr. Eng., Tel Aviv Univ., Israel
fYear
1997
fDate
29 Jun-4 Jul 1997
Firstpage
84
Abstract
Combining a linear programming approach with the Plotkin-Johnson argument for constant weight codes, we derive upper bounds on the size of codes of length n and minimum distance d=(n-j)/2, 0<j<n1/3 . For j=o(n1/3) these bounds practically coincide with the Tietavainen bound (1980) and are slightly better. For fixed j and j proportional to n1/3, j<n1/3-(2/9)ln n, it improves on the earlier known results
Keywords
codes; linear programming; Plotkin-Johnson argument; Tietavainen bound; constant weight codes; linear programming; minimum distance; small size codes; upper bounds; Error correction; Error correction codes; Linear programming; Machinery; Polynomials; Upper bound;
fLanguage
English
Publisher
ieee
Conference_Titel
Information Theory. 1997. Proceedings., 1997 IEEE International Symposium on
Conference_Location
Ulm
Print_ISBN
0-7803-3956-8
Type
conf
DOI
10.1109/ISIT.1997.612999
Filename
612999
Link To Document