DocumentCode :
3019850
Title :
Handwritten document segmentation using hidden Markov random fields
Author :
Nicolas, Stéphane ; Kessentini, Yousri ; Paquet, Thierry ; Heutte, Laurent
Author_Institution :
Rouen Univ., Mont Saint Aignan, France
fYear :
2005
fDate :
29 Aug.-1 Sept. 2005
Firstpage :
212
Abstract :
In this paper we present a method based on hidden Markov random fields and 2D dynamic programming image decoding, for segmenting pages of complex handwritten manuscripts such as novelist drafts. After a formal description of the theoretical framework and the principles of the decoding method, we describe the implementation of the model and the decoding method. Then we discuss the results obtained with this approach on the drafts of the French novelist Gustave Flaubert.
Keywords :
decoding; document image processing; dynamic programming; handwritten character recognition; hidden Markov models; image segmentation; 2D dynamic programming; handwritten document segmentation; handwritten manuscripts; hidden Markov random field; image decoding; novelist drafts; Cultural differences; Decoding; Dynamic programming; Handwriting recognition; Hidden Markov models; Image segmentation; Indexing; Paper technology; Production; Text analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Document Analysis and Recognition, 2005. Proceedings. Eighth International Conference on
ISSN :
1520-5263
Print_ISBN :
0-7695-2420-6
Type :
conf
DOI :
10.1109/ICDAR.2005.124
Filename :
1575540
Link To Document :
بازگشت