• DocumentCode
    3020186
  • Title

    The construction of trivariate nonseparable compactly supported wavelets with a class of special dilation matrix

  • Author

    Huang, Yong-Dong ; Zhu, Feng-Juan ; Cheng, Zheng-Xing

  • Author_Institution
    Inst. of Inf. & Syst. Sci., North Univ. for Nat., Yinchuan, China
  • fYear
    2009
  • fDate
    12-15 July 2009
  • Firstpage
    402
  • Lastpage
    407
  • Abstract
    In this paper, under a mild condition, the construction of compactly supported (2, 2, 1: -1, -1, 0: -1, -3, -1)-wavelets is obtained. Wavelets inherits the symmetry of the corresponding scaling function and satisfies the vanishing moment condition originating in the symbols of the scaling function. One example is also given to demonstrate the general theory.
  • Keywords
    matrix algebra; signal processing; wavelet transforms; multidimensional signals processing; multivariate wavelets analysis; scaling function; special dilation matrix; vanishing moment condition; Pattern analysis; Pattern recognition; Wavelet analysis; Riesz basis; scaling function; symmetric; vanishing moment; wavelets;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Wavelet Analysis and Pattern Recognition, 2009. ICWAPR 2009. International Conference on
  • Conference_Location
    Baoding
  • Print_ISBN
    978-1-4244-3728-3
  • Electronic_ISBN
    978-1-4244-3729-0
  • Type

    conf

  • DOI
    10.1109/ICWAPR.2009.5207451
  • Filename
    5207451