DocumentCode :
303723
Title :
Multiple-prediction-horizon recursive identification of hidden Markov models
Author :
Collings, Iain B. ; Moore, John B.
Author_Institution :
Coop Res. Centre for Sensor Signal & Inf. Process., Univ. of South Australia, The Levels, SA, Australia
Volume :
5
fYear :
1996
fDate :
7-10 May 1996
Firstpage :
2821
Abstract :
This paper considers on-line identification of hidden Markov models via multiple-prediction-horizon recursive prediction error (RPE) methods. Working with multiple-prediction-horizons ensures that there is consistent parameter estimation, under appropriate excitation conditions. Simulation studies are included to illustrate the advantages of the proposed approach when compared to standard methods (which do not ensure consistent parameter estimation)
Keywords :
error analysis; hidden Markov models; parameter estimation; prediction theory; recursive estimation; signal processing; state-space methods; excitation conditions; hidden Markov models; multiple prediction horizon; online identification; parameter estimation; recursive identification; recursive prediction error; simulation studies; state space signal model; Biomedical signal processing; Equations; Hidden Markov models; Information processing; Parameter estimation; Sensor systems; Signal processing; Signal processing algorithms; State-space methods; Working environment noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on
Conference_Location :
Atlanta, GA
ISSN :
1520-6149
Print_ISBN :
0-7803-3192-3
Type :
conf
DOI :
10.1109/ICASSP.1996.550140
Filename :
550140
Link To Document :
بازگشت