DocumentCode :
3037933
Title :
On the representation dimension of triangular matrix algebras
Author :
Lin, Hanxing
Author_Institution :
Sch. of Sci., Tianjin Univ. of Technol. & Educ., Tianjin, China
fYear :
2011
fDate :
26-28 July 2011
Firstpage :
2241
Lastpage :
2244
Abstract :
We mainly discuss the representation dimension of the 2 × 2 triangular matrix algebra over an artin algebra. Let Λ be an artin algebra, and let T2(Λ) be the 2 × 2 triangular matrix algebra over Λ. We will show that the representation dimension of T2(Λ) is upper bounded by the maximum of the representation dimension of Λ plus 1 and the global dimension of Λ plus 2. In particular, we will show that if Λ is a hereditary algebra or a tilted algebra, then the representation dimension of T2(Λ) is at most 4.
Keywords :
matrix algebra; artin algebra; global dimension; hereditary algebra; representation dimension; triangular matrix algebras; Educational institutions; Generators; Matrices; System-on-a-chip; Upper bound; artin algebras; global dimension; representation dimension; triangular matrix algebras;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Technology (ICMT), 2011 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-61284-771-9
Type :
conf
DOI :
10.1109/ICMT.2011.6002464
Filename :
6002464
Link To Document :
بازگشت