Title :
Restoration of images degraded by motion blur and noise
Author_Institution :
Kyoto University, Kyoto, Japan
Abstract :
This paper considers the restoration of images degraded by a motion blur in the presence of noise. Based on a two-dimensional separable autoregressive image model, a one-dimensional horizontally causal vector state-space model with multiple delays is derived. By the discrete sine transform, the one-dimensional vector state-space model is decomposed into a set of nearly uncorrelated scalar subsystems, to which the Kalman filter is applied to obtain an approximate recursive restoration algorithm for motion degraded images. The same technique is also applied to a semicausal minimum variance image representation in order to derive a related recursive restoration algorithm. The computational efficiency is accomplished by the discrete sine transform and the transform data compression technique. Results of simulation studies are also presented to demonstrate the feasibility of the restoration algorithms developed here.
Keywords :
Degradation; Image restoration; Kalman filters; Mathematics; Physics;
Conference_Titel :
Decision and Control including the Symposium on Adaptive Processes, 1981 20th IEEE Conference on
Conference_Location :
San Diego, CA, USA
DOI :
10.1109/CDC.1981.269549