• DocumentCode
    3045276
  • Title

    Individual classification through autoregressive modelling of micro-doppler signatures

  • Author

    Garreau, Guillaume ; Nicolaou, Nicoletta ; Georgiou, Julius

  • Author_Institution
    Holistic Electron. Res. Lab., Univ. of Cyprus, Nicosia, Cyprus
  • fYear
    2012
  • fDate
    28-30 Nov. 2012
  • Firstpage
    312
  • Lastpage
    315
  • Abstract
    This paper introduces the use of autoregressive modelling (AR) to characterize individual human gait signatures from micro-Doppler data. AR models are fitted to micro-Doppler data obtained while 6 subjects walk towards a custom-made ultrasonic transceiver module. The estimated AR coefficients capture individual movement characteristics. Such features can be used to identify different subjects quickly and with low computational cost. In the best configuration, average performance higher than 98% was obtained.
  • Keywords
    autoregressive processes; biomedical transducers; biomedical ultrasonics; gait analysis; transceivers; ultrasonic transducers; autoregressive coefficients; autoregressive modelling; human gait signatures; microDoppler signatures; ultrasonic transceiver module; Acoustics; Computational modeling; Data models; Humans; Legged locomotion; Radar; Transceivers; Micro-Doppler; autoregressive models; individual recognition; ultrasonic device;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE
  • Conference_Location
    Hsinchu
  • Print_ISBN
    978-1-4673-2291-1
  • Electronic_ISBN
    978-1-4673-2292-8
  • Type

    conf

  • DOI
    10.1109/BioCAS.2012.6418434
  • Filename
    6418434