• DocumentCode
    3064893
  • Title

    Sufficient conditions for establishing maximum likelihood estimates for nonlinear process parameters

  • Author

    Siferd, R.E. ; Maybeck, P.S.

  • Author_Institution
    Wright State University, Dayton, OH
  • fYear
    1985
  • fDate
    11-13 Dec. 1985
  • Firstpage
    212
  • Lastpage
    213
  • Abstract
    This paper considers nonlinear systems modeled by x(t) = f[t, x(t), u(t), ??]. The discrete observation process is corrupted by a zero-mean white Gaussian sequence {v(ti)}; i.e., z(ti) = y(ti) + v(ti), where y(ti) = h[x(ti), u(ti), ??], 1, 2, ... k. Sufficient conditions for identifiability of parameters ?? using the maximum likelihood estimate are established for this stochastic problem by extending previous results for deterministic systems and noiseless observations.
  • Keywords
    Density functional theory; Force control; Maximum likelihood estimation; Nonlinear control systems; Nonlinear equations; Nonlinear systems; State estimation; Stochastic resonance; Stochastic systems; Sufficient conditions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1985 24th IEEE Conference on
  • Conference_Location
    Fort Lauderdale, FL, USA
  • Type

    conf

  • DOI
    10.1109/CDC.1985.268811
  • Filename
    4048273