• DocumentCode
    307193
  • Title

    Convergence of the policy iteration algorithm with applications to queueing networks and their fluid models

  • Author

    Meyn, Sean P.

  • Author_Institution
    Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA
  • Volume
    1
  • fYear
    1996
  • fDate
    11-13 Dec 1996
  • Firstpage
    366
  • Abstract
    The average cost optimal control problem is addressed for Markov decision processes with unbounded cost. It is found that the policy iteration algorithm generates a sequence of policies which are c-regular (a strong stability condition), where c is the cost function under consideration. Furthermore, under these conditions the sequence of relative value functions generated by the algorithm is bounded from below, and “nearly” decreasing, from which it follows that the algorithm is always convergent. These results shed new light on the optimal scheduling problem for multiclass queueing networks. Surprisingly, it is found that the formulation of optimal policies for a network is closely linked to the optimal control of its associated fluid model. Moreover, the relative value function for the network control problem is closely related to the value function for the fluid network. These results are surprising since randomness plays such an important role in network performance
  • Keywords
    Markov processes; convergence; cost optimal control; decision theory; queueing theory; scheduling; Markov decision processes; average cost optimal control problem; fluid models; multiclass queueing networks; optimal scheduling problem; policy iteration algorithm; randomness; relative value functions; unbounded cost; Convergence; Costs; Extraterrestrial measurements; Integrated circuit modeling; Network synthesis; Optimal control; Optimal scheduling; Poisson equations; Stability; State-space methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1996., Proceedings of the 35th IEEE Conference on
  • Conference_Location
    Kobe
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-3590-2
  • Type

    conf

  • DOI
    10.1109/CDC.1996.574337
  • Filename
    574337