DocumentCode :
3072869
Title :
Performance Comparison of Multi-layer Perceptron (Back Propagation, Delta Rule and Perceptron) algorithms in Neural Networks
Author :
Alsmadi, Mutasem Khalil ; Omar, Khairuddin Bin ; Noah, Shahrul Azman ; Almarashdah, Ibrahim
Author_Institution :
Dept. Inf. Sci., Univ. Kebangsaan Malaysia, Kuala Lumpur
fYear :
2009
fDate :
6-7 March 2009
Firstpage :
296
Lastpage :
299
Abstract :
A multilayer perceptron is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate output. It is a modification of the standard linear perceptron in that it uses three or more layers of neurons (nodes) with nonlinear activation functions, and is more powerful than the perceptron in that it can distinguish data that is not linearly separable, or separable by a hyper plane. MLP networks are general-purpose, flexible, nonlinear models consisting of a number of units organised into multiple layers. The complexity of the MLP network can be changed by varying the number of layers and the number of units in each layer. Given enough hidden units and enough data, it has been shown that MLPs can approximate virtually any function to any desired accuracy. This paper presents the performance comparison between Multi-layer Perceptron (back propagation, delta rule and perceptron). Perceptron is a steepest descent type algorithm that normally has slow convergence rate and the search for the global minimum often becomes trapped at poor local minima. The current study investigates the performance of three algorithms to train MLP networks. Its was found that the Perceptron algorithm are much better than others algorithms.
Keywords :
backpropagation; convergence of numerical methods; multilayer perceptrons; recurrent neural nets; back propagation; convergence rate; delta rule; feedforward artificial neural network; multilayer perceptron; nonlinear activation function; performance comparison; steepest descent type algorithm; Artificial neural networks; Computer industry; Computer networks; Information science; Multi-layer neural network; Multilayer perceptrons; Nervous system; Neural networks; Neurons; Power system modeling; Back propagation; classification; delta rule learning; perceptron;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advance Computing Conference, 2009. IACC 2009. IEEE International
Conference_Location :
Patiala
Print_ISBN :
978-1-4244-2927-1
Electronic_ISBN :
978-1-4244-2928-8
Type :
conf
DOI :
10.1109/IADCC.2009.4809024
Filename :
4809024
Link To Document :
بازگشت