DocumentCode :
3077976
Title :
Comparison of auto-regressive, non-stationary excited signal parameter estimation methods
Author :
Sasou, A. ; Goto, M. ; Hayamizu, S. ; Tanaka, K.
Author_Institution :
National Inst. of Adv. Industrial Sci. & Technol.
fYear :
2004
fDate :
Sept. 29 2004-Oct. 1 2004
Firstpage :
295
Lastpage :
304
Abstract :
Previously, we proposed an auto-regressive hidden Markov model (AR-HMM) and an accompanying parameter estimation method. An AR-HMM was obtained by combining an AR process with an HMM introduced as a non-stationary excitation model. We demonstrated that the AR-HMM can accurately estimate the characteristics of both articulatory systems and excitation signals from high-pitched speech. As the parameter estimation method iteratively executes learning processes of HMM parameters, the proposed method was calculation-intensive. Here, we propose two novel kinds of auto-regressive, non-stationary excited signal parameter estimation methods to reduce the amount of calculation required
Keywords :
autoregressive processes; hidden Markov models; learning (artificial intelligence); parameter estimation; signal processing; articulatory systems; auto-regressive hidden Markov model; excitation signals; high-pitched speech; learning processes; nonstationary excitation model; signal parameter estimation methods; Hidden Markov models; Information science; Libraries; Parameter estimation; Signal analysis; Signal resolution; Speech analysis; Speech enhancement; Speech processing; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing, 2004. Proceedings of the 2004 14th IEEE Signal Processing Society Workshop
Conference_Location :
Sao Luis
ISSN :
1551-2541
Print_ISBN :
0-7803-8608-4
Type :
conf
DOI :
10.1109/MLSP.2004.1422987
Filename :
1422987
Link To Document :
بازگشت