• DocumentCode
    3079458
  • Title

    Supervised multi-class classification with adaptive and automatic parameter tuning

  • Author

    Chen, Chao ; Shyu, Mei-Ling ; Chen, Shu-Ching

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Miami, Coral Gables, FL, USA
  • fYear
    2009
  • fDate
    10-12 Aug. 2009
  • Firstpage
    433
  • Lastpage
    434
  • Abstract
    In this paper, a classification framework is developed to address the issue that empirical determination of the parameters and their values typically makes a classification framework less adaptive and general to different data sets and application domains. Experimental results show that our proposed framework achieves (1) better performance over other comparative supervised classification methods, (2) more robust to imbalanced data sets, and (3) smaller performance variance to different data sets.
  • Keywords
    learning (artificial intelligence); pattern classification; principal component analysis; adaptive parameter tuning; automatic parameter tuning; imbalanced data set; principal component analysis; supervised multiclass classification; Chaos; Equations; Iterative methods; Personal communication networks; Robustness; Testing; Training data; USA Councils;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Reuse & Integration, 2009. IRI '09. IEEE International Conference on
  • Conference_Location
    Las Vegas, NV
  • Print_ISBN
    978-1-4244-4114-3
  • Electronic_ISBN
    978-1-4244-4116-7
  • Type

    conf

  • DOI
    10.1109/IRI.2009.5211595
  • Filename
    5211595