Title :
Model Selection to Characterize Performance Using Genetic Algorithms
Author :
Martínez, D.R. ; Cabaleiro, J.C. ; Pena, T.F. ; Rivera, F.F. ; Blanco, V.
Author_Institution :
Dept. Electron. & Comput. Sci., Univ. of Santiago de Compostela, Santiago de Compostela, Spain
Abstract :
The TIA modeling framework provides analytical models of the performance of parallel applications. The resulting models are obtained using model selection techniques and are accurate enough for various purposes. Its main drawback is that the completion time depends on the number of candidate models and, in some situations, it becomes critical. In this work, a genetic algorithm is proposed for reducing the time for searching of the best candidate model. The use of this genetic algorithm to obtain the performance model of the linear implementation of the broadcast collective communication in a cluster of multicores is shown.
Keywords :
genetic algorithms; parallel algorithms; TIA modeling framework; broadcast collective communication; characterize performance; genetic algorithms; model selection techniques; multicore cluster; parallel applications; Analytical models; Computational modeling; Genetic algorithms; Instruments; Next generation networking; Sociology; Statistics; AIC; Performance modeling; genetic algorithms;
Conference_Titel :
Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International Symposium on
Conference_Location :
Leganes
Print_ISBN :
978-1-4673-1631-6
DOI :
10.1109/ISPA.2012.134