DocumentCode :
3092409
Title :
Parameter Estimation of LFM Signal in the Fractional Fourier Domain via Curve-Fitting Optimization Technique
Author :
Zhang, Fang ; Qi, Lin ; Chen, Enqing ; Mu, Xiaomin
Author_Institution :
Inf. Eng., Zhengzhou Univ., Zhengzhou, China
fYear :
2010
fDate :
17-19 Sept. 2010
Firstpage :
582
Lastpage :
585
Abstract :
In many ways about solving the large workload estimation of LFM signal in the FrF Domain, the 2D peak searching algorithm is much more complex. This paper presents an FrFT modulus detector via MLS curve-fitting optimization technique, which can simplify the 2D peak searching to a problem of 1D curve fitting. And for multi-component signals, we further introduce a Gaussian mixture model (GMM) to approximate the distribution of FrFT modular detector. Theoretical analysis and simulation results show that it can retain the high estimation accuracy and also greatly reduce the computational complexity at the same time.
Keywords :
Gaussian distribution; curve fitting; optimisation; parameter estimation; signal sampling; FrFT modular detector; Gaussian mixture model; LFM signal; curve fitting optimization technique; fractional Fourier domain; parameter estimation; searching algorithm; Curve fitting; Detectors; Estimation; Fitting; Fourier transforms; Least squares approximation; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pervasive Computing Signal Processing and Applications (PCSPA), 2010 First International Conference on
Conference_Location :
Harbin
Print_ISBN :
978-1-4244-8043-2
Electronic_ISBN :
978-0-7695-4180-8
Type :
conf
DOI :
10.1109/PCSPA.2010.146
Filename :
5636087
Link To Document :
بازگشت