DocumentCode :
3102798
Title :
Minimum entropy approach for multisensor data fusion
Author :
Zhou, Yifeng ; Leung, Henry
Author_Institution :
Telexis Corp. Canada, Ottawa, Ont., Canada
fYear :
1997
fDate :
21-23 Jul 1997
Firstpage :
336
Lastpage :
339
Abstract :
In this paper, we present a minimum entropy fusion approach for multisensor data fusion in non-Gaussian environments. We represent the fused data in the form of the weighted sum of the multisensor outputs and use the varimax norm as the information measure. The optimum weights are obtained by maximizing the varimax norm of the fused data. The minimum entropy fusion solution only depends on the empirical distribution of the sensor data and makes no specific distribution assumptions about the sensor data. Numerical simulation results are provided to show the effectiveness of the proposed fusion approach
Keywords :
minimum entropy methods; sensor fusion; statistical analysis; empirical distribution; information measure; minimum entropy fusion; multisensor data fusion; multisensor outputs; nonGaussian environments; optimum weights; varimax norm; Additive noise; Costs; Deconvolution; Ellipsoids; Entropy; Intelligent sensors; Numerical simulation; Radar; Sensor fusion; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Higher-Order Statistics, 1997., Proceedings of the IEEE Signal Processing Workshop on
Conference_Location :
Banff, Alta.
Print_ISBN :
0-8186-8005-9
Type :
conf
DOI :
10.1109/HOST.1997.613542
Filename :
613542
Link To Document :
بازگشت