DocumentCode :
3102954
Title :
Optimal estimates of MA and ARMA parameters of non-Gaussian processes from high-order cumulants
Author :
Porat, Boaz ; Friedlander, Benjamin
Author_Institution :
Dept. of Electr. Eng., Technion, Haifa, Israel
fYear :
1988
fDate :
3-5 Aug 1988
Firstpage :
208
Lastpage :
212
Abstract :
The authors describe an asymptotically minimum-variance algorithm for estimating the moving average (MA) and autoregressive moving average (ARMA) parameters of nonGaussian processes from sample second- and third-order moments. The algorithm uses the statistical properties (covariances and cross-covariances) of the sample moments explicitly. An alternative, simpler algorithm is also presented, which requires only linear operations. The latter algorithm is asymptotically minimum variance in the class of weighted least-squares algorithms
Keywords :
parameter estimation; random processes; statistical analysis; ARMA; MA; asymptotically minimum variance; asymptotically minimum-variance algorithm; autoregressive moving average; covariances; cross-covariances; high-order cumulants; linear operations; moving average; nonGaussian processes; optimal estimates; statistical properties; weighted least-squares algorithms; Additive noise; Gaussian noise; H infinity control; Parameter estimation; Phase estimation; Recursive estimation; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Spectrum Estimation and Modeling, 1988., Fourth Annual ASSP Workshop on
Conference_Location :
Minneapolis, MN
Type :
conf
DOI :
10.1109/SPECT.1988.206193
Filename :
206193
Link To Document :
بازگشت