DocumentCode :
3103610
Title :
Application of the Kato-Temple Inequality for Eigenvalues of Symmetric Matrices to Numerical Algorithms with Shift for Singular Values
Author :
Kimura, Kinji ; Takata, Masami ; Iwasaki, Masashi ; Nakamura, Yoshimasa
Author_Institution :
Niigata Univ., Niigata
fYear :
2008
fDate :
17-17 Jan. 2008
Firstpage :
113
Lastpage :
118
Abstract :
The Kato-Temple inequality for eigenvalues of symmetric matrices gives a lower bound of the minimal eigenvalue lambdam. Let A be a symmetric positive definite tridiagonal matrix defined by A = BT B, where B is bidiagonal. Then the so-called Kato-Temple bound gives a lower bound of the minimal singular value sigmam of B. In this paper we discuss how to apply the Kato-Temple inequality to shift of origin which appears in the mdLVs algorithm, for example, for computing all singular values of B. To make use of the Kato-Temple inequality a Rayleigh quotient for the matrix A = BT B and a right endpoint of interval where lambdam = sigmam 2 belongs are necessary. Then it is shown that the execution time of mdLVs with the standard shifts can be shorten by a possible choice of the generalized Newton bound or the Kato-Temple bound.
Keywords :
eigenvalues and eigenfunctions; matrix algebra; Kato-Temple bound; Kato-Temple inequality; Rayleigh quotient; eigenvalues; generalized Newton bound; lower bound; numerical algorithm; singular values; symmetric matrices; symmetric positive definite tridiagonal matrix; Convergence; Costs; Educational technology; Eigenvalues and eigenfunctions; Equations; Humans; Informatics; Linear matrix inequalities; Mathematics; Symmetric matrices; Kato-Temple inequality; Newton bound; eigenvalue; mdLVs algorithm; singular value;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Informatics Education and Research for Knowledge-Circulating Society, 2008. ICKS 2008. International Conference on
Conference_Location :
Kyoto
Print_ISBN :
978-0-7695-3128-1
Type :
conf
DOI :
10.1109/ICKS.2008.20
Filename :
4460477
Link To Document :
بازگشت