DocumentCode :
3108293
Title :
Clustering of DNA microarray temporal data based on the autoregressive model
Author :
Choong, Miew Keen ; Levy, David ; Yan, Hong
Author_Institution :
Sch. of Electr. & Inf. Eng., Univ. of Sydney, Sydney, NSW
fYear :
2008
fDate :
12-15 Oct. 2008
Firstpage :
71
Lastpage :
75
Abstract :
In this paper, we propose to combine linear prediction coefficients from the autoregressive model (AR) and the time series itself as features for the clustering algorithm. The purpose of the use of the AR model is to realize the importance of dynamic modeling of microarray time series data. We define the distance among the time series profiles using the autoregressive model and use the hierarchical clustering and the k-means clustering methods for comparison. The results show that the performance of the clustering DNA microarray time course profile is increased with the linear prediction coefficients in addition to the time series itself used as features.
Keywords :
autoregressive processes; biology computing; lab-on-a-chip; pattern clustering; time series; DNA microarray temporal data clustering; autoregressive model; hierarchical clustering; k-means clustering methods; linear prediction coefficients; microarray time series data; Clustering algorithms; Clustering methods; DNA; Data analysis; Data engineering; Gene expression; Parameter estimation; Predictive models; Singular value decomposition; Time series analysis; Autoregressive model; DNA microarray data analysis; clustering; time series analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on
Conference_Location :
Singapore
ISSN :
1062-922X
Print_ISBN :
978-1-4244-2383-5
Electronic_ISBN :
1062-922X
Type :
conf
DOI :
10.1109/ICSMC.2008.4811253
Filename :
4811253
Link To Document :
بازگشت