Title :
III-V MOSFETs: Scaling laws, scaling limits, fabrication processes
Author :
Rodwell, M.J.W. ; Singisetti, U. ; Wistey, M. ; Burek, G.J. ; Carter, A. ; Baraskar, A. ; Law, J. ; Thibeault, B.J. ; Kim, Eun Ji ; Shin, B. ; Lee, Yong-Ju ; Steiger, S. ; Lee, S. ; Ryu, H. ; Tan, Y. ; Hegde, G. ; Wang, L. ; Chagarov, E. ; Gossard, A.C. ;
Author_Institution :
Depts. of ECE & Mater., Univ. of California, Santa Barbara, CA, USA
fDate :
May 31 2010-June 4 2010
Abstract :
III-V FETs are in development for both THz and VLSI applications. In VLSI, high drive currents are sought at low gate drive voltages, while in THz circuits, high cutoff frequencies are required. In both cases, source and drain access resistivities must be decreased, and transconductance and drain current per unit gate width must be increased by reducing the gate dielectric thickness, reducing the inversion layer depth, and increasing the channel 2-DEG density of states. We here describe both nm self-aligned fabrication processes and channel designs to address these scaling limits.
Keywords :
III-V semiconductors; MOSFET; VLSI; III-V MOSFET; THz circuits; VLSI applications; channel 2-DEG density; gate dielectric thickness; scaling laws; scaling limits; self-aligned fabrication processes; Circuits; Conductivity; Cutoff frequency; FETs; Fabrication; III-V semiconductor materials; Low voltage; MOSFETs; Transconductance; Very large scale integration;
Conference_Titel :
Indium Phosphide & Related Materials (IPRM), 2010 International Conference on
Conference_Location :
Kagawa
Print_ISBN :
978-1-4244-5919-3
DOI :
10.1109/ICIPRM.2010.5515914