DocumentCode :
3116749
Title :
Comparison of Two Feature Extraction Methods Based on Maximization of Mutual Information
Author :
Chumerin, Nikolay ; Van Hulle, Marc M.
Author_Institution :
Lab. voor Neuro- en Psychofysiologie, Katholieke Univ. Leuven, Leuven
fYear :
2006
fDate :
6-8 Sept. 2006
Firstpage :
343
Lastpage :
348
Abstract :
We perform a detailed comparison of two feature extraction methods that are based on mutual information maximization between the data points projected in the developed subspace and their class labels. For the simulations, we use synthetic as well as publicly available real-world data sets.
Keywords :
feature extraction; optimisation; feature extraction methods; mutual information maximization; real-world data sets; Entropy; Feature extraction; Histograms; Independent component analysis; Iron; Laboratories; Mutual information; Principal component analysis; Psychology; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing, 2006. Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on
Conference_Location :
Arlington, VA
ISSN :
1551-2541
Print_ISBN :
1-4244-0656-0
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2006.275572
Filename :
4053671
Link To Document :
بازگشت