DocumentCode :
3122977
Title :
Projected subcodes of the second order binary Reed-Muller code
Author :
Legeay, Matthieu ; Loidreau, Pierre
Author_Institution :
IRMAR, Univ. de Rennes 1, Rennes, France
fYear :
2012
fDate :
1-6 July 2012
Firstpage :
254
Lastpage :
258
Abstract :
In this paper we construct new subcodes of the second-order binary Reed-Muller code by using the permutation group and by projecting the code onto codes with smaller parameters. The permutation group of Reed-Muller codes is the general affine group and can be decomposed into the semi-direct product of the translation group and the general linear group. The action of the translation group projects the second order Reed-Muller code onto copies of the first order Reed-Muller code. The general linear group projects the code onto codes for which we can control the useful length and the dimension. These parameters depend on the dimension of the eigenspace of the chosen element of the general linear group for the eigenvalue 1.
Keywords :
Reed-Muller codes; affine transforms; binary codes; eigenvalues and eigenfunctions; affine group; eigenspace; eigenvalue; first order Reed-Muller code; linear group; permutation group; projected subcodes; second order binary Reed-Muller code; translation group; Boolean functions; Decoding; Eigenvalues and eigenfunctions; Iron; Kernel; Linear code; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
Conference_Location :
Cambridge, MA
ISSN :
2157-8095
Print_ISBN :
978-1-4673-2580-6
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2012.6283977
Filename :
6283977
Link To Document :
بازگشت