DocumentCode :
3126154
Title :
Generalized MLSDE via the EM algorithm
Author :
Zamiri-Jafarian, H. ; Pasupathy, S.
Author_Institution :
Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada
fYear :
1999
fDate :
6-10 Jun 1999
Firstpage :
130
Lastpage :
134
Abstract :
Generalized maximum likelihood sequence detection and estimation (GMLSDE) is developed in this paper based on the expectation and maximization (EM) algorithm. The GMLSDE couples the estimation of channel parameters and data detection in the framework of the maximum likelihood (ML) criterion and unifies many MLSD/MLSDE structure receivers for different channel models. The GMLSDE clarifies the relation among channel model, receiver structure and degree of optimality. The per-survivor processing (PSP) and per-branch processing (PBP) methods emerge naturally from the EM aspect of the GMLSDE as well
Keywords :
adaptive estimation; adaptive signal detection; digital communication; maximum likelihood detection; maximum likelihood sequence estimation; optimisation; receivers; EM algorithm; MLSD/MLSDE structure receivers; adaptive MLSDE receivers; channel models; channel parameter estimation; data detection; digital communications systems; expectation maximization algorithm; generalized MLSDE; generalized maximum likelihood sequence detection; generalized maximum likelihood sequence estimation; maximum likelihood criterion; optimality; per-branch processing; per-survivor processing; Additive noise; Channel estimation; Delay; Error probability; Gaussian noise; Least squares approximation; Maximum likelihood estimation; Parameter estimation; Signal detection; Viterbi algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communication Theory Mini-Conference, 1999
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-5653-5
Type :
conf
DOI :
10.1109/CTMC.1999.790251
Filename :
790251
Link To Document :
بازگشت