Title :
Gaussian rate-distortion via sparse linear regression over compact dictionaries
Author :
Venkataramanan, Ramji ; Joseph, Antony ; Tatikonda, Sekhar
Author_Institution :
Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA
Abstract :
We study a class of codes for compressing memoryless Gaussian sources, designed using the statistical framework of high-dimensional linear regression. Codewords are linear combinations of subsets of columns of a design matrix. With minimum-distance encoding we show that such a codebook can attain the rate-distortion function with the optimal error-exponent, for all distortions below a specified value. The structure of the codebook is motivated by an analogous construction proposed recently by Barron and Joseph for communication over an AWGN channel.
Keywords :
AWGN channels; Gaussian processes; distortion; encoding; regression analysis; AWGN channel; Gaussian rate-distortion; analogous construction; codebook; codewords; compact dictionaries; design matrix; high-dimensional linear regression; linear combinations; memoryless Gaussian sources; minimum-distance encoding; optimal error-exponent; rate-distortion function; sparse linear regression; statistical framework; Decoding; Dictionaries; Encoding; Linear regression; Random variables; Rate-distortion; Vectors;
Conference_Titel :
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
Conference_Location :
Cambridge, MA
Print_ISBN :
978-1-4673-2580-6
Electronic_ISBN :
2157-8095
DOI :
10.1109/ISIT.2012.6284210