DocumentCode :
3140697
Title :
Evolving support vector machine parameters
Author :
Quang, Anh Tran ; Zhang, Qian-Li ; Li, Xing
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
Volume :
1
fYear :
2002
fDate :
2002
Firstpage :
548
Abstract :
The kernel type, kernel parameters and upper bound C control the generalization of support vector machines. The best choice of kernel or C depends on each other and the art of researchers. This paper presents a general optimization problem of support vector machine parameters including a mixed kernel and different upper bounds for unbalanced data. The objectives are ξa-estimators of the error rate, recall and precision. Evolutionary algorithms are used to solve the problem. The performance of this method is illustrated with a standard data set of intrusion detection application.
Keywords :
generalisation (artificial intelligence); genetic algorithms; learning automata; learning systems; security of data; evolutionary algorithms; generalization; intrusion detection; kernel type; learning machine; optimization; support vector machine; upper bound; Art; Error analysis; Evolutionary computation; Intrusion detection; Kernel; Machine learning; Optimization methods; Support vector machine classification; Support vector machines; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on
Print_ISBN :
0-7803-7508-4
Type :
conf
DOI :
10.1109/ICMLC.2002.1176817
Filename :
1176817
Link To Document :
بازگشت