DocumentCode
3140730
Title
Mobile node rostering in intermittently connected passive RFID networks
Author
Yang, Zhipeng ; Wu, Hongyi
Author_Institution
Center for Adv. Comput. Studies, Univ. of Louisiana at Lafayette, Lafayette, LA, USA
fYear
2011
fDate
21-25 March 2011
Firstpage
111
Lastpage
119
Abstract
This paper focuses on the problem of rostering in intermittently connected passive RFID networks. It aims to report a list of tagged mobile nodes that appear in given interested area(s) and time interval(s). Such rostering faces several unique challenges. First, the network consists of two dramatically different types of nodes: powerful static readers and extremely resource-constrained mobile tags. Communication can be established from a reader to a tag only, but not tags to tags or readers to readers. Therefore the connectivity is very low and intermittent. Besides connectivity, the tag´s computation power is also intermittent. It is available only for a short interval when the tag is powered up by a nearby reader, rendering any continuous functions impossible. Moreover, the capacity of tags is so limited that it becomes the critical network resource and communication bottleneck. To address the above challenges, we propose a rostering algorithm that employs a dynamic space-efficient coding scheme to construct hypothetic packet candidates, appraises their values according to information redundancy and tag mobility, and establishes a 0-1 Knapsack model to choose the best set of packets, which together maximize their total (redundancy-excluded) value but do not exceed the capacity of a tag. We carry out experiments that involve 38 volunteers for 9 days and perform large-scale simulations to evaluate the proposed rostering scheme.
Keywords
encoding; mobile radio; radiofrequency identification; 0-1 knapsack model; hypothetic packet candidates; intermittently connected passive RFID networks; mobile node rostering; radiofrequency identification; resource-constrained mobile tags; space-efficient coding scheme; static readers; tagged mobile nodes; Batteries; Distributed databases; Mobile communication; Radiofrequency identification; Redundancy; Wildlife;
fLanguage
English
Publisher
ieee
Conference_Titel
Pervasive Computing and Communications (PerCom), 2011 IEEE International Conference on
Conference_Location
Seattle, WA
Print_ISBN
978-1-4244-9530-6
Electronic_ISBN
978-1-4244-9528-3
Type
conf
DOI
10.1109/PERCOM.2011.5767575
Filename
5767575
Link To Document