DocumentCode :
3142697
Title :
Salient Object Extraction Based on Region Saliency Ratio
Author :
Han, Zhongmin ; Liu, Zhi ; Zhang, Zhaoyang ; Lu, Yu ; Li, Weiwei ; Yan, Hongbo
Author_Institution :
Sch. of Commun. & Inf. Eng., Shanghai Univ., Shanghai, China
fYear :
2009
fDate :
1-3 June 2009
Firstpage :
611
Lastpage :
615
Abstract :
This paper proposes an efficient approach to extract salient objects in an image. A scale-invariant saliency map is first constructed based on a multi-resolution feature contrast calculation, meanwhile the image is segmented into homogenous regions using nonparametric kernel density estimation (NKDE). Then the region saliency ratio of each region combination to its complement is calculated in turn. Finally, salient objects are extracted by maximizing the region saliency ratio. Experimental results demonstrate the effectiveness of the proposed approach.
Keywords :
feature extraction; image resolution; image segmentation; image segmentation; multiresolution feature contrast calculation; nonparametric kernel density estimation; region saliency ratio; salient object extraction; scale-invariant saliency map; Content based retrieval; Data mining; Displays; Humans; Image retrieval; Image segmentation; Information science; Kernel; Object detection; Robustness; image segmentation; salient object extraction; scale-invariant saliency;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Information Science, 2009. ICIS 2009. Eighth IEEE/ACIS International Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-0-7695-3641-5
Type :
conf
DOI :
10.1109/ICIS.2009.163
Filename :
5223050
Link To Document :
بازگشت