DocumentCode :
3163555
Title :
A global attractivity result for a class of switching discrete-time systems
Author :
Solmaz, Selim ; Shorten, Robert ; Cairbre, Fiacre Ó
Author_Institution :
Nat. Univ. of Ireland-Maynooth, Maynooth
fYear :
2007
fDate :
9-13 July 2007
Firstpage :
3462
Lastpage :
3463
Abstract :
In this paper we present the global attractivity properties of a class of discrete-time switching systems of the form x(k+ 1) = Aix(k), Ai epsiv = {A1,...,Am}, where each constituent matrices Ai epsiv Rnxn are Schur stable. We assume that a set of non-singular matrices Tij epsiv Rnxn exist such that the matrices Tij AiTij -1 and Tij AjTij -1 for i, j epsiv {1, ...,m} are upper triangular. We show that for a special subset of such switching systems the origin is globally attractive, and it is possible to prove this without requiring the existence of a common quadratic Lyapunov function (CQLF).
Keywords :
Lyapunov methods; discrete time systems; matrix algebra; time-varying systems; common quadratic Lyapunov function; global attractivity result; nonsingular matrices; switching discrete-time systems; Cities and towns; Control systems; Discrete transforms; Lyapunov method; Mathematics; Stability; Sufficient conditions; Switched systems; Switching systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2007. ACC '07
Conference_Location :
New York, NY
ISSN :
0743-1619
Print_ISBN :
1-4244-0988-8
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2007.4282444
Filename :
4282444
Link To Document :
بازگشت