Title :
Implementation of Kernel Methods on the GPU
Author :
Ohmer, Julius ; Maire, Frederic ; Brown, Ross
Author_Institution :
Queensland University of Technology
Abstract :
Kernel methods such as kernel principal component analysis and support vector machines have become powerful tools for pattern recognition and computer vision. Unfortunately the high computational cost of kernel methods is a limiting factor for real-time classification tasks when running on the CPU of a standard PC. Over the last few years, commodity Graphics Processing Units (GPU) have evolved from fixed graphics pipeline processors into more flexible and powerful data-parallel processors. These stream processors are capable of sustaining computation rates of greater than ten times that of a single CPU. GPUs are inexpensive and are becoming ubiquitous (desktops, laptops, PDAs, cell phones). In this paper, we present a face recognition system based on kernel methods running on the GPU. This GPU implementation is twenty eight times faster than the same optimized application running on the CPU.
Keywords :
Central Processing Unit; Computational efficiency; Computer graphics; Computer vision; Kernel; Pattern recognition; Pipelines; Principal component analysis; Support vector machine classification; Support vector machines;
Conference_Titel :
Digital Image Computing: Techniques and Applications, 2005. DICTA '05. Proceedings 2005
Conference_Location :
Queensland, Australia
Print_ISBN :
0-7695-2467-2
DOI :
10.1109/DICTA.2005.48