Title :
Interaction of cold metastable neon atoms - towards Bose-Einstein condensation of neon
Author :
Spodem, P. ; Kraemer, T. ; Bunkowski, A. ; Zinner, M. ; Birkl, C. ; Ertmer, W.
Author_Institution :
Inst. fur Quantenoptik, Hannover Univ., Germany
Abstract :
Summary form only given. The understanding of the interaction of ultracold atoms will be substantially extended by the experimental study of ultracold non-alkaline systems. Due to the special internal structure and the high internal energy, metastable noble gases will play a crucial role. The objective of our work is to attain a detailed study of the atomic structure and the interactions in a gas of ultracold metastable neon atoms. Ensembles of high phase space density and, if possible, Bose condensates shall be achieved. The elementary pair interaction as well as the collective interactions are to be characterized. Of special interest is Penning ionization as it is the main loss process in dense metastable atom traps. The degree of its suppression in a spin polarized gas will strongly affect the feasibility of a quantum-degenerate system of metastable atoms. In addition, metastable noble gas atoms will allow the implementation of novel diagnostics for the investigation of Bose condensates due to their high detectability. We want to make use of this advantage in order to investigate higher order correlation functions and study the laser-like behavior of Bose condensates and atom-laser outputs. We have achieved loading of 4×108 atoms in a magneto-optical trap (MOT) and after efficient spin polarization of 2.5 × 108 atoms in a Ioffe-Pritchard-type magnetic trap. We present a precision measurement of the lifetime of the 3s[3/2]2-metastable state of neon which we could determine to 14.70(13)s. We report on the status of the determination of the elastic scattering rate, the rates of Penning ionization for spin-polarized and non-spin-polarized atom samples, and the implementation of evaporative cooling.
Keywords :
Bose-Einstein condensation; Penning ionisation; atom-atom collisions; magneto-optical devices; metastable states; neon; particle traps; radiation pressure; radiative lifetimes; 3s[3/2]2-metastable state lifetime; Bose-Einstein condensation; Ioffe-Pritchard-type magnetic trap; Ne; Penning ionization; atom-laser; cold metastable neon atoms interaction; collective interactions; elastic scattering rate; elementary pair interaction; evaporative cooling; high phase space density; higher order correlation functions; laser-like behavior; magneto-optical trap; nonspin-polarization; quantum-degenerate system; spin polarized gas; Atom lasers; Atomic beams; Atomic measurements; Gas lasers; Gases; Ionization; Magnetoelasticity; Metastasis; Particle scattering; Polarization;
Conference_Titel :
Quantum Electronics Conference, 2003. EQEC '03. European
Print_ISBN :
0-7803-7733-8
DOI :
10.1109/EQEC.2003.1314123